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A new method to evaluate the dispersion interaction between two weakly 
interacting closed shell molecules is presented. The method is based on a 
second-order sum-over-states perturbation method, where the nominator is 
approximated by products of one electron integrals. 
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1. Introduction 

In the last years a few methods for determining the dispersion interaction between 
two molecules have been proposed. In one approach the dispersion energy is 
estimated by a second-order sum-of-states perturbation method [1-8]. In this 
approximation the dispersion energy (positive for stabilization) is given by 

o c c  v a c  o c c  v a c  
Edisp= ~, ~'~ ~, ~ I(A~176 (1) 

i k Iz v E i A ~ k A , I . t B - ~ - - E o  

where AoBo is the Hartree product of the Har t ree-Fock  wavefunction for the 
molecules A and B, Ai-~kB~-,~ is the corresponding Hart ree  product for singly 
excited states of A and B, H a is the molecular interaction part of the Hamiltonian. 
E0 is the sum of the unperturbed energies for molecules A and B and EiA~kA,~B-'~B 
is the sum of the energies corresponding to the singly excited wavefunctions Ai-~k 
and B~_~. More rigorous estimates of the dispersion energies based on configura- 
tion interaction calculations have only been made in a few cases for other systems 
than monoatomic gases [9-14]. Together  with these ab initio calculations also 
some semi-empirical estimates of the dispersion energy have been made [15-17]. 
In this work a method to evaluate the dispersion energy is presented. The method 
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is based on Eq. (1) but the nominator is approximated by products of one-electron 
integrals. 

2. Theory 

Starting with Eq. (1) and using a MSller-Plesset partition and canonical Hartree- 
Fock SCF orbitals one obtains: 

O C c  v a c  o c c  v a c  
Early =4  E Z ~] E [(iA(1)kA(1)[1/r~21IZB(2)VB(2))I2 (2) 

i k p. ~, ek -- ei -b eu -- e~ 

where the nominator is a two-electron integral over the canonical SCF orbitals 
iA, kA, tXB and US and the denominator is the difference of the orbital energies. If 
1/r12 is expanded in a Taylor series in rl, !"2 and R12 accoring to Fig. 1 and 
remembering the orbital orthogonality one obtains 

(iA(1)kA(1) ~ /XB(2)PB(2)) 

~R1_~12 ( ( i A l r l l k A ) .  3 

�9 ( # . I t 2  �9 R12 IvB)) 

3 2 
+2- -~12( ( iA I r l kA)"  (/~AIr2" R12[UB)- (iAIrl" R12[kA)" (/zBlr~ [/J~B) 

+ 2(( iAIr lr ,"  R12]kA)" (/~Blr21/~B)- ( iAIrl lkA)" (tzBIr2r2" RlZlVB)) 

5 
R ~2{ ( i Alrl " n12r1" RI2l k A) " (~Blr2 " n~2l ~B) 

- - ( l A i r  1 "R121kn)(~tBIr2 .R12r2 .R121vB)) + �9 �9 �9 . (3) 

If Eq. (3) is used in Eq. (2), an approximate value of the dispersion energy may be 
calculated. There is however one arbitrary parameter in Eq. (3). That is, when 
dealing with polyatomic molecules there is no obvious choice of origin for r~ and 
r2. The dispersion energy is however not very sensitive to this parameter if rl and 
r2 << R12 and in this work the ambiguity is removed by calculating the center of 
charge for each orbital. Then the origin of the transition dipole and quadrupole is 
taken as the average value of the center of charge of the two orbitals 

ri-~k = �89 + rk) . (4) 

Further it should be noted that since the perturbation calculation is taken only to 
second order, the result depends on the energy denominator in the perturbation 
expansion. In the work by Kochanski et al. on the H2 dimer [2] the dispersion 

~ / ~  Fig. 1. Definition of rl, r2, r12 and R12 for two 
interacting molecules 
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energy calculated using Epstein-Nesbet partition is 30% larger than the value 
calculated using M611er-Plesset partition. The value obtained from converged CI 
calculations is usually in between [9]. In this work two different energy 
denominators have been used. The first choice corresponds to an ordinary 
M61ter-Plesset partition and the second choice is a modified version of the 
M611er-Plesset partition that will be justified below. At the SCF level the 
polarisability may be calculated either using finite perturbation theory (i.e. adding 
a term corresponding to an electrical field to the Fock matrix and performing an 
ordinary SCF calculation) or in the uncoupled Hartree-Fock approximation (i.e. 
perform a first order perturbation calculation on the molecule using the electrical 
field as perturbation operator). The expression for one component of the polaris- 
ability tensor in the uncoupled HF approximation is then given by 

( i lxlk)( i[x ' lk)  
P,~, = Z (5) 

i,k ek -- ei 

This polarisability is usually too small compared to the more accurate value 
obtained in an ordinary finite perturbation calculation. This gives a possibility to 
scale the orbital energies in Eq. (5) so that the scaled uncoupled Hartree-Fock 
polarisability is equal to the finite perturbation theory value. If only the dipole- 
dipole interaction part of the dispersion interaction is considered, the dispersion 
energy may be written 

occ vac occ vac 1 

Ed '~P :4~  ~ ~ ~ R 6  e 

• ( ( iA t rx lkA)"  <t~lr=]~,~)- 3/R22  ( iAIr l"  R 1 2  I ka }" (IxBtrz" R121,VB)) 2 (6) 

ek + e~, -- ei -- e~ 

or if the Z-axis is taken as the internuclear axis 

occ vac occ vac 1 

( ( iAlXx [kA)  (#BIX2IVB)+ ( i A I Y l I k A )  (I~BIY2IVn) --  2(iAIZ t IkA) (,%lz2l/~B)) 2 

• ek + 4 v -  e i -  e u 
(7) 

From Eq. (7) it may be seen that the dispersion energy expression is built up from 
terms similar to those giving the polarisability. Consequently it seems resonable to 
scale the orbital energies in the dispersion energy calculation with the same scaling 
factor that was obtained by putting the uncoupled Hartree-Fock polarisability 
equal to the finite perturbation theory value. In this work the scaling factor has 
been obtained by putting the traces of the two polarisability tensors equal. 

3. Test Calculations 

The main advantage of an approximate method like the one described here lies in 
its computational simplicity - this will be discussed further in the next paragraph - 
but its value depends strongly on its predicted abilities. Since accurate estimates of 
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Table 1. Dispersion interaction for the I-I 2 dimer energy in 10-3a.u. 

Geometry d This work 
a.u. M611er-Plesset Energy-scaled 

Ref. [3] 
Nesbeth- 

Mgller-Plesset Epstein 

Ref. [9]" 
All singles 
and doubles 

Rectangular 4 2.5735 3.4560 1.6251 2.2943 
5 0.6064 0.8143 0.5101 0.7320 
5.5 0.3304 0.4437 0.2961 0.4270 0.400 
6 0.1907 0.2561 0.1768 0.2558 0.243 
6.5 0.1154 0.1550 0.1089 0.1579 0.152 
7 0.0726 0.0975 0.0692 0.1006 0.097 
7.5 0.0473 0.0635 0.0452 0.0660 0.064 

10 0.0080 0.0108 0.0078 0.0114 0.011 
20 0.00012 0.00016 0.00012 0.00017 

T-shape 4 3.3711 4.5271 2.2761 3.1648 
5 0.7686 1.0322 0.7148 1.0161 
5.5 0.4138 0.5557 0.4126 0.5908 0.491 
6 0.2364 0.3175 0.2438 0.3509 0.297 
6.5 0.1419 0.1906 0.1481 0.2139 0.182 
7 0.0888 0.1193 0.0927 0.1342 0.115 
7.5 0.0575 0.0772 0.0598 0.0867 0.073 

10 0.00961 0.0129 0.0098 0.0143 0.009 
20 0.00141 0.000189 0.00014 0.00021 

Linear 4 4.7751 6.4126 3.6332 4.9808 
5 1.0600 1.4235 1.1377 1.6027 
5.5 0.5650 0.7580 0.6517 0.9269 0.726 
6 0.3201 0.4299 0.3807 0.5447 0.452 
6.5 0.1908 0.2562 0.2270 0.3270 0.283 
7 0.1186 0.1593 0.1393 0.2015 0.181 
7.5 0.0764 0.1026 0.0881 0.1279 0.118 

10 0.0126 0.0169 0.0135 0.0197 0.018 
20 0.00018 0.00024 0.00018 0.00027 

Non-planar 4 2.3630 3.1733 1.4453 2.0428 
5 0.5656 0.7596 0.4637 0.6662 
5.5 0.3099 0.4162 0.2720 0.3925 0.384 
6 0.1796 0.2412 0.1639 0.2375 0.232 
6.5 0.1091 0.1465 0.1017 0.1475 0.144 
7 0.0689 0.0925 0.0651 0.0945 0.091 
7.5 0.0450 0.0604 0.0428 0.0622 0.060 

10 0.00772 0.01037 0.0075 0.0109 0.010 
20 0.000116 0.000156 0.00011 0.00017 

a A slightly larger basis set has been used. 

t h e  d i s p e r s i o n  e n e r g y  b a s e d  o n  p e r t u r b a t i o n  e n e r g y  a r e  v e r y  t i m e - c o n s u m i n g  o n l y  

a f e w  exis t .  B e l o w ,  e x a m p l e s  wil l  b e  g i v e n  w h i c h  s h o w  h o w  th i s  m e t h o d  

r e p r o d u c e s  t h e s e  m o r e  a c c u r a t e  r e su l t s .  

3.1. The Dimers o f  I-I 2 and Ne  

I n  t w o  a r t i c l e s  K o c h a n s k i  et al. h a v e  s t u d i e d  t h e  H2  d i m e r  [29] ,  w h e r e  s e v e r a l  

d i f f e r e n t  b a s i s  s e t s  h a v e  b e e n  u s e d .  T h e  d i s p e r s i o n  i n t e r a c t i o n s  h a v e  b e e n  
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I I 1 ,  I 

1 2 

Fig. 2. Different orientations of the H2 dimer. (1) 
Rectangular, (2) Linear, (3) T-shape, (4) Non- 
planar 

r i i 

I ,, i 

3 ~ 

estimated using three different methods. The first estimates made by Kochanski is 
based on Eq. (2), the second is a slightly modified form of Eq. (2) where a 
Nesbeth-Epstein partition has been used, and the third is based on conventional 
CI calculations including all singly and doubly replaced configurations [18]. 
Unfortunately the same basis set has not been used for all three methods. 
Estimates of the dispersion energy for the four different configurations studied 
(see Fig. 2) for different intermolecular distances are given in Table 1. It should be 
noted that the same basis set (called B3 in [2], i.e. a 4s, 3p basis contracted to 2s, 
3p) is used for the first four columns of Table 1, but the fifth estimate made by 
ordinary CI calculations is made with a slightly larger basis set giving an approxi- 
mately 5% larger dispersion energy. 

From Table 1 it may be seen for intermolecular distances where the overlap is 
small the agreement between the two MiSller-Plesset estimates of the dispersion 
energy is good (i.e. the error is of the order  of 10%). As may be expected the error 
is larger for small intermolecular distances and decreases with increasing inter- 
molecular distances It is also gratifying that the agreement between the energy- 
scaled estimate and the estimate based on all single and double CI calculations are 
quite satisfactory. Results very similar to those obtained for the Hz dimer are also 
obtained for Ne2 (see Table 2). The same basis set has been used in this study, ((10, 
6, 4) [8, 6, 4], for further information see Ref. [7]), and in the reference study of 
Prisette [7], whereas the value of Stevens [15] is obtained with a larger Slater 
basis, which could be expected to include more of the dispersion interaction. Here  
it is more difficult to make comparisons, but considering that the dispersion energy 

Table 2. Dispersion interaction for the Ne dimer energy in 10 -3 a.u. 

d This work Ref. [7] Ref. [15] 
a .u .  M611er-Plesset Energy scaled Nesbeth-Epstein CI 

5 0.3739 0.4370 0.493 
5.5 0.2051 0.2397 0.271 
6 0.1191 0.1392 0.156 
6.1136 0.1059 0.1238 0.139 
6.5 0.0724 0.0846 0.094 

0.166 
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Table 3. Dispersion energy for the H20 dimer in 10 -3 a.u. 

This work Ref. [10] 
Distance (A) M611er-Plesset Energy scaled CI 

2.7 0.2618 0.3245 " 0.2350 
2.8 0.2022 0.2505 0.1949 
2.9 0.1579 0.1956 0.1634 
3.0 0.1246 0.1544 0.1388 
3.1 0.0994 0.1232 0.1192 

calculated using MiSller-Plesset partition are usually smaller than the values 
obtained using Nesbeth-Epstein partition and remembering that the value from a 
CI calculation including all singles and doubles usually falls in between and also 
remembering that a basis set giving larger dispersion energy has been used in the 
CI calculation, the agreement is quite satisfactory. 

3.2. The Dimers of H20 and HF 

The molecules used for test calculations in the previous section were very small 
non-polar molecules. Consequently it may also be interesting to see how the 
proposed method works for large polar systems. Unfortunately no accurate 
dispersion energy calculations for such systems are available, but a few accurate 
studies of the somewhat larger water and HF dimers exist [10-11, 14]. In Table 3 
the dispersion energies obtained with this method are compared with the more 
accurate values calculated using all singly and doubly replaced states in a 
conventional CI calculation [10]. The same basis set (11, 7, 1) [5, 3, 1] is used for 0 
and (5, 1) [3, 1] for H, see Ref. [10] for further data. For  a description of the 
geometry see Fig. 3. The conclusions to be drawn from Table 3 are again the same: 
for large intermolecular distances where the overlap is small both methods are in 
good agreement with more accurate estimates and for smaller intermolecular 
distances the error increases. It is however encouraging to see that even at the 
minimum of the intermolecular potential, which occurs at 2.924 A, the result 
differs only by 10-20% from the more reliable CI calculations. 

A similar analysis is made for a linear head-to-tail  conformation of the HF dimer. 
Reference data are taken from a study of Lischka, and a basis set of (11, 7, 2) [7, 4, 
2] for F and (6, 1) [4, 1] for H is used. In the reference study Gaussian lobe 
functions have been used but in this work Cartesian functions are used. This 
should, however, not effect the results significantly. 

In Table 4 the obtained values are shown. Here  the situation is quite different. The 
agreement between the contribution from the configuration interaction cal- 
culations to the binding energy differs drastically from the calculated dispersion 

i= d ~i 

H~,o. i [ H~O H--O 
H Fig. 3. Geometry of the studied water dimer 
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energy. The explanation is given by Lischka in his work. In the three columns to 
the right Lischka's estimate of the dispersion binding energy is given. These 
columns agree well with the estimates made in this work. However,  when 
performing CI calculations on the HF monomer,  the properties of this molecule 
change drastically, leading to a change in e.g. electrostatic and exchange inter- 
actions in the HF dimer. 

4. Discussion 

In the previous paragraph it was shown that for molecular complexes where the 
electrostatic and polarisability properties of the monomers do not change 
significantly due to configuration interaction calculations, the effect of a 
configuration interaction calculation may be accurately estimated with the pro- 
posed method. Here  it should also be pointed out that the change in electrostatic 
and polarisation interactions due to configuration interaction effects in the 
monomers may be fairly accurately estimated using ordinary electrostatic theory 
and performing configuration interaction calculations on the monomers.  It is also 
worth noting that when the change in electrostatic interaction is of the same order 
of magnitude as the dispersion energy, the dispersion energy is usually small 
compared to the total interaction energy. 

As mentioned before, the main advantage with this method is its computational 
simplicity. One point on the H - F  dimer surface took 5 hours on a Univac 1108 in 
the work of Lischka. Most of this time was spent in the program steps needed to 
evaluate the correlation contribution to the binding energy. An estimate of the 
dispersion interaction with an ordinary sum-over-states second-order pertur-  
bation approach may be estimated to take half an hour. A calculation of the 
dispersion energy with the proposed method takes a few seconds. 

One further advantage of the proposed method compared to ordinary CI cal- 
culations is that the calculated total dispersion energy is size consistent whereas 
ordinary CI calculations underestimate the dispersion interaction. This may 
explain why the energy-scaled dispersion interaction is somewhat larger than the 
ordinary CI value for larger intermolecular distances for large systems. 
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